Home Reference Source

src/crypt/aes-decryptor.js

  1. // PKCS7
  2. export function removePadding (buffer) {
  3. const outputBytes = buffer.byteLength;
  4. const paddingBytes = outputBytes && (new DataView(buffer)).getUint8(outputBytes - 1);
  5. if (paddingBytes) {
  6. return buffer.slice(0, outputBytes - paddingBytes);
  7. } else {
  8. return buffer;
  9. }
  10. }
  11.  
  12. class AESDecryptor {
  13. constructor () {
  14. // Static after running initTable
  15. this.rcon = [0x0, 0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36];
  16. this.subMix = [new Uint32Array(256), new Uint32Array(256), new Uint32Array(256), new Uint32Array(256)];
  17. this.invSubMix = [new Uint32Array(256), new Uint32Array(256), new Uint32Array(256), new Uint32Array(256)];
  18. this.sBox = new Uint32Array(256);
  19. this.invSBox = new Uint32Array(256);
  20.  
  21. // Changes during runtime
  22. this.key = new Uint32Array(0);
  23.  
  24. this.initTable();
  25. }
  26.  
  27. // Using view.getUint32() also swaps the byte order.
  28. uint8ArrayToUint32Array_ (arrayBuffer) {
  29. let view = new DataView(arrayBuffer);
  30. let newArray = new Uint32Array(4);
  31. for (let i = 0; i < 4; i++) {
  32. newArray[i] = view.getUint32(i * 4);
  33. }
  34.  
  35. return newArray;
  36. }
  37.  
  38. initTable () {
  39. let sBox = this.sBox;
  40. let invSBox = this.invSBox;
  41. let subMix = this.subMix;
  42. let subMix0 = subMix[0];
  43. let subMix1 = subMix[1];
  44. let subMix2 = subMix[2];
  45. let subMix3 = subMix[3];
  46. let invSubMix = this.invSubMix;
  47. let invSubMix0 = invSubMix[0];
  48. let invSubMix1 = invSubMix[1];
  49. let invSubMix2 = invSubMix[2];
  50. let invSubMix3 = invSubMix[3];
  51.  
  52. let d = new Uint32Array(256);
  53. let x = 0;
  54. let xi = 0;
  55. let i = 0;
  56. for (i = 0; i < 256; i++) {
  57. if (i < 128) {
  58. d[i] = i << 1;
  59. } else {
  60. d[i] = (i << 1) ^ 0x11b;
  61. }
  62. }
  63.  
  64. for (i = 0; i < 256; i++) {
  65. let sx = xi ^ (xi << 1) ^ (xi << 2) ^ (xi << 3) ^ (xi << 4);
  66. sx = (sx >>> 8) ^ (sx & 0xff) ^ 0x63;
  67. sBox[x] = sx;
  68. invSBox[sx] = x;
  69.  
  70. // Compute multiplication
  71. let x2 = d[x];
  72. let x4 = d[x2];
  73. let x8 = d[x4];
  74.  
  75. // Compute sub/invSub bytes, mix columns tables
  76. let t = (d[sx] * 0x101) ^ (sx * 0x1010100);
  77. subMix0[x] = (t << 24) | (t >>> 8);
  78. subMix1[x] = (t << 16) | (t >>> 16);
  79. subMix2[x] = (t << 8) | (t >>> 24);
  80. subMix3[x] = t;
  81.  
  82. // Compute inv sub bytes, inv mix columns tables
  83. t = (x8 * 0x1010101) ^ (x4 * 0x10001) ^ (x2 * 0x101) ^ (x * 0x1010100);
  84. invSubMix0[sx] = (t << 24) | (t >>> 8);
  85. invSubMix1[sx] = (t << 16) | (t >>> 16);
  86. invSubMix2[sx] = (t << 8) | (t >>> 24);
  87. invSubMix3[sx] = t;
  88.  
  89. // Compute next counter
  90. if (!x) {
  91. x = xi = 1;
  92. } else {
  93. x = x2 ^ d[d[d[x8 ^ x2]]];
  94. xi ^= d[d[xi]];
  95. }
  96. }
  97. }
  98.  
  99. expandKey (keyBuffer) {
  100. // convert keyBuffer to Uint32Array
  101. let key = this.uint8ArrayToUint32Array_(keyBuffer);
  102. let sameKey = true;
  103. let offset = 0;
  104.  
  105. while (offset < key.length && sameKey) {
  106. sameKey = (key[offset] === this.key[offset]);
  107. offset++;
  108. }
  109.  
  110. if (sameKey) {
  111. return;
  112. }
  113.  
  114. this.key = key;
  115. let keySize = this.keySize = key.length;
  116.  
  117. if (keySize !== 4 && keySize !== 6 && keySize !== 8) {
  118. throw new Error('Invalid aes key size=' + keySize);
  119. }
  120.  
  121. let ksRows = this.ksRows = (keySize + 6 + 1) * 4;
  122. let ksRow;
  123. let invKsRow;
  124.  
  125. let keySchedule = this.keySchedule = new Uint32Array(ksRows);
  126. let invKeySchedule = this.invKeySchedule = new Uint32Array(ksRows);
  127. let sbox = this.sBox;
  128. let rcon = this.rcon;
  129.  
  130. let invSubMix = this.invSubMix;
  131. let invSubMix0 = invSubMix[0];
  132. let invSubMix1 = invSubMix[1];
  133. let invSubMix2 = invSubMix[2];
  134. let invSubMix3 = invSubMix[3];
  135.  
  136. let prev;
  137. let t;
  138.  
  139. for (ksRow = 0; ksRow < ksRows; ksRow++) {
  140. if (ksRow < keySize) {
  141. prev = keySchedule[ksRow] = key[ksRow];
  142. continue;
  143. }
  144. t = prev;
  145.  
  146. if (ksRow % keySize === 0) {
  147. // Rot word
  148. t = (t << 8) | (t >>> 24);
  149.  
  150. // Sub word
  151. t = (sbox[t >>> 24] << 24) | (sbox[(t >>> 16) & 0xff] << 16) | (sbox[(t >>> 8) & 0xff] << 8) | sbox[t & 0xff];
  152.  
  153. // Mix Rcon
  154. t ^= rcon[(ksRow / keySize) | 0] << 24;
  155. } else if (keySize > 6 && ksRow % keySize === 4) {
  156. // Sub word
  157. t = (sbox[t >>> 24] << 24) | (sbox[(t >>> 16) & 0xff] << 16) | (sbox[(t >>> 8) & 0xff] << 8) | sbox[t & 0xff];
  158. }
  159.  
  160. keySchedule[ksRow] = prev = (keySchedule[ksRow - keySize] ^ t) >>> 0;
  161. }
  162.  
  163. for (invKsRow = 0; invKsRow < ksRows; invKsRow++) {
  164. ksRow = ksRows - invKsRow;
  165. if (invKsRow & 3) {
  166. t = keySchedule[ksRow];
  167. } else {
  168. t = keySchedule[ksRow - 4];
  169. }
  170.  
  171. if (invKsRow < 4 || ksRow <= 4) {
  172. invKeySchedule[invKsRow] = t;
  173. } else {
  174. invKeySchedule[invKsRow] = invSubMix0[sbox[t >>> 24]] ^ invSubMix1[sbox[(t >>> 16) & 0xff]] ^ invSubMix2[sbox[(t >>> 8) & 0xff]] ^ invSubMix3[sbox[t & 0xff]];
  175. }
  176.  
  177. invKeySchedule[invKsRow] = invKeySchedule[invKsRow] >>> 0;
  178. }
  179. }
  180.  
  181. // Adding this as a method greatly improves performance.
  182. networkToHostOrderSwap (word) {
  183. return (word << 24) | ((word & 0xff00) << 8) | ((word & 0xff0000) >> 8) | (word >>> 24);
  184. }
  185.  
  186. decrypt (inputArrayBuffer, offset, aesIV, removePKCS7Padding) {
  187. let nRounds = this.keySize + 6;
  188. let invKeySchedule = this.invKeySchedule;
  189. let invSBOX = this.invSBox;
  190.  
  191. let invSubMix = this.invSubMix;
  192. let invSubMix0 = invSubMix[0];
  193. let invSubMix1 = invSubMix[1];
  194. let invSubMix2 = invSubMix[2];
  195. let invSubMix3 = invSubMix[3];
  196.  
  197. let initVector = this.uint8ArrayToUint32Array_(aesIV);
  198. let initVector0 = initVector[0];
  199. let initVector1 = initVector[1];
  200. let initVector2 = initVector[2];
  201. let initVector3 = initVector[3];
  202.  
  203. let inputInt32 = new Int32Array(inputArrayBuffer);
  204. let outputInt32 = new Int32Array(inputInt32.length);
  205.  
  206. let t0, t1, t2, t3;
  207. let s0, s1, s2, s3;
  208. let inputWords0, inputWords1, inputWords2, inputWords3;
  209.  
  210. let ksRow, i;
  211. let swapWord = this.networkToHostOrderSwap;
  212.  
  213. while (offset < inputInt32.length) {
  214. inputWords0 = swapWord(inputInt32[offset]);
  215. inputWords1 = swapWord(inputInt32[offset + 1]);
  216. inputWords2 = swapWord(inputInt32[offset + 2]);
  217. inputWords3 = swapWord(inputInt32[offset + 3]);
  218.  
  219. s0 = inputWords0 ^ invKeySchedule[0];
  220. s1 = inputWords3 ^ invKeySchedule[1];
  221. s2 = inputWords2 ^ invKeySchedule[2];
  222. s3 = inputWords1 ^ invKeySchedule[3];
  223.  
  224. ksRow = 4;
  225.  
  226. // Iterate through the rounds of decryption
  227. for (i = 1; i < nRounds; i++) {
  228. t0 = invSubMix0[s0 >>> 24] ^ invSubMix1[(s1 >> 16) & 0xff] ^ invSubMix2[(s2 >> 8) & 0xff] ^ invSubMix3[s3 & 0xff] ^ invKeySchedule[ksRow];
  229. t1 = invSubMix0[s1 >>> 24] ^ invSubMix1[(s2 >> 16) & 0xff] ^ invSubMix2[(s3 >> 8) & 0xff] ^ invSubMix3[s0 & 0xff] ^ invKeySchedule[ksRow + 1];
  230. t2 = invSubMix0[s2 >>> 24] ^ invSubMix1[(s3 >> 16) & 0xff] ^ invSubMix2[(s0 >> 8) & 0xff] ^ invSubMix3[s1 & 0xff] ^ invKeySchedule[ksRow + 2];
  231. t3 = invSubMix0[s3 >>> 24] ^ invSubMix1[(s0 >> 16) & 0xff] ^ invSubMix2[(s1 >> 8) & 0xff] ^ invSubMix3[s2 & 0xff] ^ invKeySchedule[ksRow + 3];
  232. // Update state
  233. s0 = t0;
  234. s1 = t1;
  235. s2 = t2;
  236. s3 = t3;
  237.  
  238. ksRow = ksRow + 4;
  239. }
  240.  
  241. // Shift rows, sub bytes, add round key
  242. t0 = ((invSBOX[s0 >>> 24] << 24) ^ (invSBOX[(s1 >> 16) & 0xff] << 16) ^ (invSBOX[(s2 >> 8) & 0xff] << 8) ^ invSBOX[s3 & 0xff]) ^ invKeySchedule[ksRow];
  243. t1 = ((invSBOX[s1 >>> 24] << 24) ^ (invSBOX[(s2 >> 16) & 0xff] << 16) ^ (invSBOX[(s3 >> 8) & 0xff] << 8) ^ invSBOX[s0 & 0xff]) ^ invKeySchedule[ksRow + 1];
  244. t2 = ((invSBOX[s2 >>> 24] << 24) ^ (invSBOX[(s3 >> 16) & 0xff] << 16) ^ (invSBOX[(s0 >> 8) & 0xff] << 8) ^ invSBOX[s1 & 0xff]) ^ invKeySchedule[ksRow + 2];
  245. t3 = ((invSBOX[s3 >>> 24] << 24) ^ (invSBOX[(s0 >> 16) & 0xff] << 16) ^ (invSBOX[(s1 >> 8) & 0xff] << 8) ^ invSBOX[s2 & 0xff]) ^ invKeySchedule[ksRow + 3];
  246. ksRow = ksRow + 3;
  247.  
  248. // Write
  249. outputInt32[offset] = swapWord(t0 ^ initVector0);
  250. outputInt32[offset + 1] = swapWord(t3 ^ initVector1);
  251. outputInt32[offset + 2] = swapWord(t2 ^ initVector2);
  252. outputInt32[offset + 3] = swapWord(t1 ^ initVector3);
  253.  
  254. // reset initVector to last 4 unsigned int
  255. initVector0 = inputWords0;
  256. initVector1 = inputWords1;
  257. initVector2 = inputWords2;
  258. initVector3 = inputWords3;
  259.  
  260. offset = offset + 4;
  261. }
  262.  
  263. return removePKCS7Padding ? removePadding(outputInt32.buffer) : outputInt32.buffer;
  264. }
  265.  
  266. destroy () {
  267. this.key = undefined;
  268. this.keySize = undefined;
  269. this.ksRows = undefined;
  270.  
  271. this.sBox = undefined;
  272. this.invSBox = undefined;
  273. this.subMix = undefined;
  274. this.invSubMix = undefined;
  275. this.keySchedule = undefined;
  276. this.invKeySchedule = undefined;
  277.  
  278. this.rcon = undefined;
  279. }
  280. }
  281.  
  282. export default AESDecryptor;